Gibbs-markov Structures and Limit Laws for Partially Hyperbolic Attractors with Mostly Expanding Central Direction

نویسندگان

  • José F. Alves
  • Vilton Pinheiro
چکیده

— We consider a partially hyperbolic set K on a Riemannian manifold M whose tangent space splits as TKM = E cu⊕Es, for which the centre-unstable direction E expands non-uniformly on some local unstable disk. We show that under these assumptions f induces a Gibbs-Markov structure. Moreover, the decay of the return time function can be controlled in terms of the time typical points need to achieve some uniform expanding behavior in the centre-unstable direction. As an application of the main result we obtain certain rates for decay of correlations, large deviations, an almost sure invariance principle and the validity of the Central Limit Theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GIBBS-MARKOV STRUCTURES AND LIMIT LAWS FOR PARTIALLY HYPERBOLIC ATTRACTORS WITH MOSTLY EXPANDING CENTRAL DIRECTION by

— We consider a partially hyperbolic set K on a Riemannian manifold M whose tangent space splits as TKM = Ecu⊕Es, for which the centre-unstable direction E expands non-uniformly on some local unstable disk. We show that under these assumptions f induces a Gibbs-Markov hyperbolic structure. Moreover, the decay of the return time function can be controlled in terms of the time typical points need...

متن کامل

Srb Measures for Partially Hyperbolic Systems Whose Central Direction Is Mostly Contracting

We consider partially hyperbolic diieomorphisms preserving a splitting of the tangent bundle into a strong-unstable subbundle E uu (uniformly expanding) and a subbundle E c , dominated by E uu. We prove that if the central direction E c is mostly contracting for the diieomorphism (negative Lyapunov exponents), then the ergodic Gibbs u-states are the Sinai-Ruelle-Bowen measures, there are nitely...

متن کامل

On the Volume of Singular-hyperbolic Sets

An attractor Λ for a 3-vector field X is singular-hyperbolic if all its singularities are hyperbolic and it is partially hyperbolic with volume expanding central direction. We prove that C singularhyperbolic attractors, for some α > 0, always have zero volume, thus extending an analogous result for uniformly hyperbolic attractors. The same result holds for a class of higher dimensional singular...

متن کامل

Topological dimension of singular - hyperbolic attractors

An attractor is a transitive set of a flow to which all positive orbit close to it converges. An attractor is singular-hyperbolic if it has singularities (all hyperbolic) and is partially hyperbolic with volume expanding central direction [16]. The geometric Lorenz attractor [6] is an example of a singular-hyperbolic attractor with topological dimension ≥ 2. We shall prove that all singular-hyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009